N2	1.2203 (3)	0.3911	(2) 0.472	25 (2)	0.0251 (6)	Bhagwat, V. W., Manohar, H. & Poonia, N. S
C1	1.2955 (3)	0.23311	0.474	40 (2)	0.0189 (6)	Chem Lett 16 373_375
C2	1.3267 (3)	0.1542	(2) 0.538	39 (2)	0.0195 (6)	Boer I I de & Duisenberg A I M (1084) 4
C3	1.3228 (3)	0.1465	(2) 0.661	14 (2)	0.0181 (6)	Conductale B. D. & Baaria N. S. (1977). Asta C
C4	1.2849 (3)	0.2215	(2) 0.722	27 (2)	0.0156 (5)	Crauwick, P. D. & Pooma, N. S. (1977). Acta C
C5	1.2533 (3)	0.3026	(2) 0.661	15 (2)	0.0167 (6)	Enraf-Nonius (1985), CAD-4 Software. Versi
C6	1.2602 (3)	0.3060	(2) 0.539	91 (2)	0.0189 (6)	Delft, The Netherlands.
C7	1.2673 (3)	0.2111	(2) 0.852	22 (2)	0.0174 (6)	Johnson, C. K. (1976). ORTEP. Report ORNL
022	1.1016 (2)	0.2578	(2) 1.087	73 (2)	0.0238 (5)	tional Laboratory, Tennessee, USA.
	T.1.1. 0	<i>a</i>		1		Poonia, N. S. (1974). J. Am. Chem. Soc. 96, 101
	Table 2.	Geometric	parameter	s (A, °)		Poonia, N. S., Bagdi, P. & Sidhu, K. S. (1986).
07—C9		1.366 (3)	C18—C19		1.505 (4)	43-54.
O7—C14		1.429 (4)	C20-C21		1.497 (3)	Poonia, N. S. & Bajaj, A. V. (1979). Chem. Rev
O8-C15		1.426 (3)	01—N1		1.228 (3)	Sheldrick, G. M. (1976). SHELX76. Program for
O8-C16		1.436 (3)	O2—N1		1.225 (4)	mination, Univ, of Cambridge, England,
O9 – C 17		1.426 (4)	O3—C7		1.215 (4)	Sheldrick, G. M. (1990). Acta Cryst. A46, 467-
O9—C18		1.423 (4)	O4—C7		1.314 (4)	Spek A L (1990a) HELENA Program for da
O10-C19		1.434 (3)	O5—N2		1.226 (4)	tium voor Kristel en Structuurshemie Univ
O10-C20		1.431 (3)	O6—N2		1.223 (3)	landa
O11-C10		1.364 (3)	N1C2		1.475 (4)	$S_{\text{main}} = A + A + A + A + A + A + A + A + A + A$
011–C21		1.432 (4)	N2C6		1.470 (4)	Spek, A. L. (1990b). Acta Cryst. A46, C34.
C8–C9		1.383 (3)	C1—C2		1.379 (3)	
C8—C13		1.406 (3)	C1C6		1.382 (3)	
C9C10		1.404 (4)	C2-C3		1.384 (3)	
C10-C11		1.390 (3)	C3—C4		1.389 (4)	
CI1-C12		1.406 (3)	C4C5		1.388 (4)	
C12-C13		1.369 (4)	C4—C7		1.499 (3)	
CI4-CI5		1.500 (3)	C5—C6		1.386 (3)	Acta Cryst. (1993). C49, 1378–1380
C10C1/		1.509 (4)				
C9-07-C	14	118.0 (2)	011-C21-C	220	106.3 (2)	Structure of $(S)_{(\perp)}$ Thursefor
C15-08-0	C16	112.2 (2)	01N102		124.3 (3)	Structure of (3) - $(+)$ -inuprotei
C17-09-0	C18	112.8 (2)	01-N1-C2		117.6 (3)	
C19-010-	-C20	112.0 (2)	02-N1-C2		118.1 (2)	
C10-011-	-C21	117.9 (2)	05-N2-06		124.1 (3)	ANDREW A. FREER*
07-08-01	13	119.2 (3)	O5N2C6		117.6 (2)	
07 - 09 - 01	8	125.2 (3)	06-N2-C6		118.3 (3)	Department of Chemistry, University of
$0^{-}0^{-}0^{-}0^{-}0^{-}0^{-}0^{-}0^{-}$	10	114.3 (2)	C2-C1-C6		115.8 (2)	Glasgow G12 1800 Scotland
	10	120.5 (2)	NI-C2-CI		118.6 (2)	Stasgon 012 10gg, Scottana
011-010		114.5 (2)	NI-C2-C3		118.2 (3)	
	·CII	123.0 (3)	CI = C2 = C3		123.2 (2)	JILLIAN M. BUNYAN, NORMAN SHANK
	C12	119.8 (2)	$C_2 - C_3 - C_4$		118.9 (3)	DAVID P. SUEEN
	C12	119.3 (3)	C_{4}		120.1 (2)	DAVID D. SHEEN
C_{1}	-015	120.3(2)	$C_{3} - C_{4} - C_{7}$		118.3 (2)	
07_014 0	-14	120.7 (2)	$C_{4} = C_{4} = C_{7}$		121.5 (2)	Department of Pharmacy, University of
	714	103.4 (2)	V4-C5-C6		118.3 (3)	Glasgow G1 1XW. Scotland
08-016	-14 717	109.3 (2)			11/./(2)	
09-017 0	-17 716	113.3 (2)	112 - 00 - 03		118.5 (2)	(Passingd 17 August 1002) manual 110 T
09-01/0	10	107.9 (2)	0^{2} 0^{2} 0^{2} 0^{3}		123.7 (3)	(Neceiveu 17 August 1992; accepted 18 Janua
010_010	-17 -C18	107.7(2) 111.0(2)	03-07-04		123.2 (2)	
010_00	.021	110 2 (2)			121.3 (2)	
010-020-		110.2 (2)	U-U/-U4		113.3 (2)	Abstract

Crystals of the title compound [m.p. 373.0 (5) K] were prepared by slow evaporation of a mixture of 3,5-dinitrobenzoic acid and benzo-15-crown-5 (0.0002 M) (1:1) in ethanol (5 ml) at 298 K.

All non-H atoms in the structure were found by direct methods and refined anisotropically. The H-atom positions were located from $\Delta \rho$ syntheses and all parameters were refined individually. The absolute structure is arbitrarily chosen. Inversion of the structure yields insignificant differences in the R value.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71034 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1021]

References

Bhagwat, V. W., Manohar, H. & Poonia, N. S. (1980a). Inorg. Nucl. Chem. Lett. 16, 289-292.

©1993 International Union of Crystallography Printed in Great Britain - all rights reserved

- S. (1980b). Inorg. Nucl.
- cta Cryst. A40, C410.
- Cryst. B33, 197-199.
- ion 5.0. Enraf-Nonius,
- -5138. Oak Ridge Na-
- 2-1019.
- J. Inclusion Phenom. 4,
- , **79**, 389-445.
- r crystal structure deter-
- 473
- ata reduction. Laboratoof Utrecht, The Nether-

n

of Glasgow,

LAND AND

of Strathclyde.

rv 1993)

Abstract

(S)-(+)-Ibuprofen, α -methyl-4-(2-methylpropyl)benzeneacetic acid, crystallizes with two molecules in the asymmetric unit to form a cyclic hydrogenbonded dimer. Within the dimer each molecule shows subtle conformational differences via rotations about the acetic C(1)—C(2) and C(10)—C(11)bonds. Bond distances and angles for (S)-(+)ibuprofen are in close agreement with those found for the structure of the racemic compound [McConnell (1974). Cryst. Struct. Commun. 3, 73-75].

Comment

The properties of enantiomers and their mixtures are relevant to the study of molecular recognition in biological systems, and to acute drug toxicity. At the molecular level, asymmetry often underlies the specificity of only one member of an enantiomeric pair for

Acta Crystallographica Section C ISSN 0108-2701 ©1993 its bio target and hence the asymmetric centre plays a key role in determining the clinical efficacy of the compound.

We have already reported an investigation of the lattice energy and crystal shape of racemic ibuprofen (Bunyan, Shankland & Sheen, 1991) and now our attention turns to crystals of the single enantiomer.

(S)-(+)-Ibuprofen crystallizes with two molecules per asymmetric unit to form a cyclic hydrogenbonded dimer (Fig. 1); each molecule adopts an Sconfiguration. This contrasts to racemic ibuprofen where the dimer is formed by hydrogen bonds across a centre of inversion (space group $P2_1/c$), one molecule being R and the other S. Within the (S)-(+)dimer each molecule displays subtle conformational differences effected by two rotations. In the first instance, a rotation of 180° about the C(1)-C(2) bond by the carboxylic acid group, and secondly, a rotation of 60° by the isobutyl group about the C(10)—C(11) bond. Hence in one molecule of the dimer the C(3) methyl lies adjacent to the carbonyl O atom and in the other half of the dimer it is adjacent to the hydroxyl O atom. The second rotation confers a different arrangement of the isobutyl methyls with respect to C(3) – in one half of the dimer they are both on the same side, whereas in the other they lie on opposite sides of the molecule. It is probable that these two rotations are brought about by, in the first case, the requirement to form an acid dimer (in a space group devoid of a centre of symmetry) and, in the second case, the need to avoid steric interactions primarily between adjacent isobutyl groups of neighbouring molecules.

This type of free rotation may be a necessary prerequisite for crystallization of certain molecules in asymmetric space groups. In racemic ibuprofen the necessity to use space-group symmetry leads to a more open lattice with lesser steric interactions.

Bond lengths and angles are similar to those of (R,S)-ibuprofen, the largest deviation occurring at the C(11)—C(12) bond. The propionic acids are interlinked to form a cyclic hydrogen-bonded dimer with $O(1A)\cdots O(2B)$ and $O(1B)\cdots O(2A)$ distances of 2.66(1) and 2.64(1)Å, respectively. A final difference Fourier synthesis revealed the positions of

Fig. 1. A perspective view (Johnson, 1976; Mallinson & Muir, 1987) of the cyclic dimer formation between (S)-(+)-ibuprofen molecules.

two peaks in the expected vicinity of the missing hydroxyl protons; however, quality and paucity of data did not allow these positions to be refined.

Experimental

Mo $K\alpha$ radiation
λ = 0.71069 Å
Cell parameters from 25
reflections
$\theta = 12 - 15^{\circ}$
T = 291 K
Needle
$0.5 \times 0.5 \times 0.2$ mm
Colourless
Crystal source: from
methanol

Data collection CAD-4 diffractometer

CAD-4 diffractometer	$\theta_{\rm max} = 27^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 15$
Absorption correction:	$k = 0 \rightarrow 10$
none	$l = -17 \rightarrow 17$
2911 measured reflections	2 standard reflections
2911 independent reflections	frequency: 120 min
1259 observed reflections	intensity variation: <5%
$[I > 3.0\sigma(I)]$	

Refinement

Refinement on F	$w = 1/\sigma^2(F_o)$
Final $R = 0.056$	$(\Delta/\sigma)_{\rm max} = 0.22$
wR = 0.067	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
S = 3.09	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
1259 reflections	Atomic scattering factors
271 parameters	from International Tables
H-atom parameters not re-	for X-ray Crystallography
fined	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters ($Å^2$)

$U_{\rm eo} = \frac{1}{2} \sum_i \sum_i U_{ii} a_i^* a_i \cdot \mathbf{a}_i \cdot \mathbf{a}_i.$

		-	•	
	x	у	z	U_{eq}
O(1A)	-0.9649 (5)	-0.9020 (10)	-0.7762 (4)	0.093
O(2A)	-1.0849 (4)	-0.7330	-0.8958 (4)	0.076
C(1A)	-0.9875 (7)	-0.7597 (13)	-0.8305 (6)	0.068
C(2A)	-0.8907 (6)	-0.6410 (12)	-0.8011 (6)	0.077
C(3A)	-0.9005 (7)	-0.5283 (13)	-0.8955 (6)	0.092
C(4A)	-0.8838 (6)	-0.5465 (12)	-0.6991 (6)	0.063
C(5A)	-0.9503 (7)	-0.4072 (13)	-0.7049 (6)	0.073
C(6A)	0.9468 (6)	-0.3258 (12)	-0.6166 (6)	0.066
C(7A)	-0.8766 (7)	-0.3801 (12)	-0.5159 (7)	0.075
C(8A)	-0.8111 (7)	-0.5229 (13)	-0.5092 (6)	0.082
C(9A)	-0.8140 (7)	-0.6038 (13)	-0.6016 (6)	0.079
C(10A)	-0.8637 (7)	-0.2878 (15)	-0.4112 (6)	0.092
C(11A)	-0.7653 (7)	-0.1641 (12)	-0.3729 (5)	0.076
C(12A)	-0.7429 (7)	-0.0998 (15)	-0.2646 (6)	0.105
C(13A)	-0.7843 (7)	-0.0218 (13)	-0.4485 (7)	0.090
O(1 <i>B</i>)	-0.2680 (4)	0.0713 (9)	0.0491 (4)	0.075
O(2B)	-0.1496 (5)	-0.1000 (8)	0.1688 (4)	0.087
C(1B)	-0.2439 (7)	-0.0699 (12)	0.1008 (6)	0.061
C(2B)	-0.3420 (6)	-0.1968 (12)	0.0675 (5)	0.068
C(3B)	-0.4567 (6)	-0.1145 (13)	0.0514 (6)	0.094
C(4B)	-0.3400 (6)	-0.2878 (11)	-0.0325 (5)	0.058

C(5B)	-0.2668 (6)	-0.4213 (11)	-0.0168 (5)	0.059
C(6B)	-0.2623 (6)	-0.5106 (11)	-0.1041 (5)	0.060
C(7 <i>B</i>)	-0.3324 (6)	-0.4670 (11)	-0.2057 (6)	0.058
C(8 <i>B</i>)	-0.4058 (7)	-0.3294 (12)	-0.2216 (6)	0.070
C(9B)	-0.4088 (6)	-0.2404 (11)	0.1353 (5)	0.062
C(10B)	-0.3372 (6)	-0.5633 (11)	-0.3051 (5)	0.066
C(11B)	-0.4390 (7)	0.6831 (12)	-0.3517 (6)	0.074
C(12B)	-0.4338 (10)	-0.8180 (15)	-0.2766 (8)	0.122
C(13B)	-0.4477 (8)	-0.7513 (13)	-0.4568 (6)	0.107

Table 2. Geometric parameters (Å, °)

O(1A) - C(1A)	1.329 (13)	O(2A) - C(1A)	1.211 (10)
C(1A) - C(2A)	1.466 (13)	C(2A) - C(3A)	1.533 (13)
C(2A) - C(4A)	1.549 (12)	C(4A) - C(5A)	1.376 (13)
C(4A)-C(9A)	1.348 (11)	C(5A) - C(6A)	1.347 (12)
C(6A) - C(7A)	1.374 (12)	C(7A) - C(8A)	1.390 (14)
C(7A)-C(10A)	1.552 (12)	C(8A)C(9A)	1.398 (12)
C(10A)-C(11A)	1.505 (14)	C(11A)-C(12A)	1.476 (11)
C(11A)C(13A)	1.491 (13)	O(1B) - C(1B)	1.306 (11)
O(2B) - C(1B)	1.202 (10)	C(1B) - C(2B)	1.520 (12)
C(2B)—C(3B)	1.512 (12)	C(2B)—C(4B)	1.548 (10)
C(4B)—C(5B)	1.370 (12)	C(4B)—C(9B)	1.374 (10)
C(5B)—C(6B)	1.402 (10)	C(6B)—C(7B)	1.358 (10)
C(7B)—C(8B)	1.397 (12)	C(7B)—C(10B)	1.533 (11)
C(8B)C(9B)	1.382 (11)	C(10B)C(11B)	1.521 (12)
C(11B)—C(12B)	1.470 (15)	C(11B)—C(13B)	1.489 (11)
O(1A)-C(1A)-O(2A)	119.5 (8)	O(1A)-C(1A)-C(2A)	115.7 (8)
O(2A) - C(1A) - C(2A)	124.6 (9)	C(1A) - C(2A) - C(3A)	111.6 (7)
C(1A) - C(2A) - C(4A)	108.4 (7)	C(3A) - C(2A) - C(4A)	114.4 (8)
C(2A) - C(4A) - C(5A)	121.6 (7)	C(2A) - C(4A) - C(9A)	119.7 (8)
C(5A) - C(4A) - C(9A)	118.6 (8)	C(4A) - C(5A) - C(6A)	122.2 (8)
C(5A) - C(6A) - C(7A)	120.9 (9)	C(6A) - C(7A) - C(8A)	117.3 (8)
C(6A) - C(7A) - C(10A)	123.7 (9)	C(8A) - C(7A) - C(10A)	119.0 (8)
C(7A) - C(8A) - C(9A)	121.0 (8)	C(4A) - C(9A) - C(8A)	120.0 (9)
C(7A) - C(10A) - C(11A)	114.3 (7)	C(10A)-C(11A)-C(12A)	112.8 (7)
C(10A) - C(11A) - C(13A)	112.3 (7)	C(12A)-C(11A)-C(13A)	109.4 (9)
O(1B) - C(1B) - O(2B)	122.6 (8)	O(1B) - C(1B) - C(2B)	115.7 (7)
O(2B) - C(1B) - C(2B)	121.7 (8)	C(1B) - C(2B) - C(3B)	110.8 (8)
C(1B) - C(2B) - C(4B)	106.9 (6)	C(3B) - C(2B) - C(4B)	114.6 (6)
C(2B)—C(4B)—C(5B)	118.0 (6)	C(2B) - C(4B) - C(9B)	122.7 (8)
C(5B)-C(4B)-C(9B)	119.3 (7)	C(4B)—C(5B)—C(6B)	120.8 (7)
C(5B)-C(6B)-C(7B)	120.1 (8)	C(6B)—C(7B)—C(8B)	119.0 (7)
C(6B)—C(7B)—C(10B)	123.3 (8)	C(8B)—C(7B)—C(10B)	117.7 (7)
C(7B)-C(8B)-C(9B)	120.7 (7)	C(4B)—C(9B)—C(8B)	120.1 (8)
C(7B) - C(10B) - C(11B)	115.2 (6)	C(10B)-C(11B)-C(12B)	112.0 (7)
C(10B)-C(11B)-C(13B)	111.6 (7)	C(12B)-C(11B)-C(13B)	110.9 (9)

The structure was solved by direct methods with *MITHRIL* (Gilmore, 1984). Full-matrix least-squares refinement of coordinates and anisotropic thermal parameters was performed for all non-H atoms. All calculations were made on a MicroVAX 3600 using the Glasgow *GX* package (Mallinson & Muir, 1985).

(S)-(+)-Ibuprofen was kindly supplied by Boots Chemicals, Nottingham, England.

References

Bunyan, J. M., Shankland, N. & Sheen, D. B. (1991). Am. Inst. Chem. Eng. Symp. Ser. 87(284), 44–57.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved McConnell, J. F. (1974). Cryst. Struct. Commun. 3, 73-75. Mallinson, P. R. & Muir, K. W. (1987). J. Appl. Cryst. 18, 51-53.

Acta Cryst. (1993). C49, 1380-1384

Synthesis and Structure of New Families of Potential Antitumor or Antiviral Agents. I. 4b,6a,10b,10c-Tetrahydrobenzo[3,4]cyclobuta[1,2-*a*]biphenylene-4b,6a-diyl Diacetate

S. IANELLI AND M. NARDELLI*

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

D. Belletti

Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

B. JAMART-GRÉGOIRE, A. MOUADDIB AND P. CAUBÈRE

Laboratoire de Chimie Organique I, UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France

(Received 18 September 1992; accepted 7 January 1993)

Abstract

The bent triphenylene derivative 4b,6a,10b,10c-tetrahydrobenzo[3,4]cyclobuta[1,2-*a*]biphenylene-4b,6a-diyl diacetate was prepared during the course of research into the synthesis of aromatic polycyclic derivatives showing antitumor or antiviral activity, and its structure determined by X-ray diffraction. The two benzocyclobutene groups are *anti* across the central cyclohexene ring; the acetoxy groups are *anti* to each other and *cis* to the benzocyclobutene groups. The geometry of the pentacyclic system is discussed and the factors determining the orientation of the acetoxy substituents are considered. The results of the refinements on F and F^2 are compared.

Comment

As a continuation of our program aimed at the synthesis of aromatic polycyclic derivatives with biological activ-

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, and bond distances and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71015 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1030]